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Abstract

Peéople identification in video based on the way they walk (i.e. gait) Sl relevant task]in computer
Vision using a non-invasive approach. Standard and current approaches typically [lSHRE gait signatures
BB scquences of binary energy maps of subjects extracted-from-images; but this process introduces
a large amount of non-stationary noise, thus, conditioning their efficacy. In contrast, in this paper we
focus on the raw pixels, or simple functions derived from them, letting advanced learning techniques to

extract relevant features. Therefore, we present a [[ilpanaNg study of different [CORVOItONAINETTREl
NEReTRNCNN)IEIEHTeetiies on three low-level features (i.e. gray pixels, optical flow channels and

depth maps) on two widely-adopted and challenging datasets: [UNECEIDISHHCASIARE. In addition,
we perform a comparatlve study between different early and late fusion methods used-te-ecombine-the

o . Our experimental results suggest that ()
the use of hand-crafted energy maps (e g. GEI) is not necessary, since equal or better results can be
achieved from the raw pixels; (ii) the [SIBRSEON of multiple [NSMMEEE (.. gray pixels, optical flow
and depth maps) from different CNNs allows to obtain state-of-the-art results on the gait task with
an image resolution several times smaller than the previously reported results; and, (éi:) the selection
of the architecture is a critical point that can make the difference between state-of-the-art results or
poor results.

Keywords: Gait signature, Convolutional Neural Networks, Multimodal Fusion, Optical Flow,
Depth

1. Introduction

iRz
The goal of gait recognition is to identify people by the way they walk. This type of biometric

approach is considered non-invasive, since it is performed at a distance, and does not require the
cooperation of the subject that has to be identified, in contrast to other methods as iris- or fingerprint-
based approaches [I|2]. Gait recognition has multiple applications in the context of video FiliCHENGS
ranging from control access in restricted areas to early detection of persons of interest as, for example,
v.i.p. customers in a bank office.

From a computer vision point of view, [gait recognition could be seen as a particular case of human
action recognition [3, 4]. However, gait recognition requires more fine-grained features than action
recognition, as differences between different gait styles are usually much more subtle than between
common action categories (e.g. ‘high jump’ vs. ‘javelin throw’) included in state-of-the-art datasets [5].

In last years, great effort has been put into the problem of people identification based on gait
recognition [6]. However, previous approaches have mostly used hand-crafted features, as energy
maps, after preprocessing video frames by using non-linear filtering. The extracted features, apart
from not being easily scalable to diverse datasets, lare corrupted by no standard noise derived from the
filtering transformation [7]. In addition, the noise introduced by the loss of local smoothing between
BEEEEHE (romes along the time-line makes these features very noisy and variable. Recently, some
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Figure 1: Pipeline for gait recognition. a) The input is a sequence of RGB-D video frames. b) Low-level features
are extracted along the sequence and stacked building volumes. ¢) Volumes are passed through the CNN to obtain gait
signatures. d) CNN outputs are combined. €) A final decision is taken to output an identity.

works based on Convolutional Neural Networks (CNNs) have appeared, for example, Wu et al. [§]
presents a comparative study of CNN architectures focused on the Gait Energy Image descriptor as
input.

In contrast to all the previous works, we present an approach for gait-based people identification
which is independent of any strong image filtering as it uses the raw image, or simple functions derived
from it, as input to find the best features (i.e. gait descriptor) for the identification task.

The design of our experimental study is directed towards three main objectives. [The first objective
fis'the identification of good architectures that, using as input 2D spatial information from a sequence
of video frames or 3D spatio-temporal information from a finite subset of video frames, are capable of
achieving high scores in the task of gait recognition. To this effect we design 2D-CNN and 3D-CNN
architectures with different depth (i.e. layers). In addition, as previous works [9] have shown that
deeper CNN models achieve better generalisation power, we have also designed a ResNet architecture

based on (1. I EEEEANG BN e R SRR (- ol
of gray-level pixels, optical flow maps and depth maps) 6 automatically derive gait signatures. And,
SR SEEVENEOTASEeSH ¢ FHEOBAONGMHORHARON | v from different inputs allows t0

obtain better models for the task of gait recognition.

To the best of our knowledge, this is the first in-depth study of the impact of CNN architectures
and multimodal features on the gait recognition task using raw input data.

Therefore, the main contributions of this work are: (i) a comparative study of state-of-the-art CNN
architectures using as input 2D or 3D information blocks representing [l and FBSl@ temporal
low-level information, respectively, from data; (i) a thorough experimental study to validate the
proposed framework on the standard TUM-GAID and CASIA-B datasets for gait identification; (7i)
an extensive experimental study of low level feature fusion; and, (iv) i oEICEEeE o1 both
datasets, being our fusion scheme the best approach. RITHINE

The rest of the paper is organized as follows. We in Sec. An

start by reviewing related work
GetviewIof HieaamentalsIoR NN is presented in Sec. B, Then, Sec. [ Sxplainsthielifeean ONN
Achitectures and fusion techmices, Scc. || GOt Fhe experiments nd tesulfs. Finally, we present

the conclusions in Sec.
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2. Related work

2.1. Feature learning

A new realm of the feature learning field for recognition tasks started with the advent of Deep
Learning (DL) architectures [I1]. These architectures are suitable for discovering good features for
classification tasks [12] [13]. Recently, DL approaches based on CNN have been used on image-based
tasks with great success [9, 14} [I5]. In the last years, deep architectures for video have appeared,
specially focused on action recognition, where the inputs of the CNN are subsequences of stacked
frames. The very first approximation of DL applied to stacked frames is proposed in [I6], where the
authors apply a convolutional version of the Independent Subspace Analysis algorithm to sequences
of frames. By this way, they obtain low-level features which are used by high-level representation
algorithms. A more recent approach is proposed in [I7], where a complete CNN is trained with
sequences of stacked frames as input. In [I8], Simonyan and Zisserman proposed to use as input to a
CNN a volume obtained as the concatenation of two channels: optical flow in the z-axis and y-axis.
To normalize the size of the inputs, they split the original sequence in subsequences of 10 frames,
considering each subsample independently.

Donahue et al. [19] propose a new viewpoint in DL using a novel architecture called ‘Long-term
Recurrent Convolutional Networks’. This new architecture combines CNN (specialized in spatial
learning) with Recurrent Neural Networks (specialized in temporal learning) to obtain a new model
able to deal with visual and temporal features at the same time. Recently, Wang et al. [20] combined
dense trajectories with DL. The idea is to obtain a powerful model that combines the deep-learnt
features with the temporal information of the trajectories. They train a traditional CNN and use
dense trajectories to extract the deep features to build a final descriptor that combines the deep
information over time. On the other hand, Perronnin et al. [21] proposed a more traditional approach
using Fisher Vectors as input to a Deep Neural Network instead of using other classifiers like SVM.
Recently, He et al. [10] proposed a new kind of CNN, named ResNet, which has a large number of
convolutional layers and ‘residual connections’ to avoid the vanishing gradient problem.

Although several papers can be found for the task of human action recognition using DL techniques,
oS ap P ID NG EIPIOBISHNGE cait recognition. In [22], Hossain and Chetty propose the use
of Restricted Boltzmann Machines to extract gait features from binary silhouettes, but a very small
probe set (i.e. only ten different subjects) were used for validating their approach. A more recent
work, [23], uses a random set of binary silhouettes of a sequence to train a CNN that accumulates the
calculated features in order to achieve a global representation of the dataset. In [24], raw 2D GEI are
employed to train an ensemble of CNN, where a Multilayer Perceptron (MLP) is used as classifier.
Similarly, in [25] a multilayer CNN is trained with GEI data. A novel approach based on GEI is
developed on [§], where the CNN is trained with pairs of gallery-probe samples and using a distance
metric. Castro et al. [26] use optical flow obtained from raw data frames. An in-dept evaluation of
different CNN architectures based on optical flow maps is presented in [27]. Finally, in [28] a multitask
CNN with a combined loss function with multiple kind of labels is presented.

Despite most CNNs are trained with visual data (e.g. images or videos), there are some works
that build CNNs for different kinds of data like inertial sensors or human skeletons. Holden et al.
[29] propose a CNN that corrects wrong human skeletons obtained by other methods or devices (e.g.
Microsoft Kinect). Neverova et al. [30] build a temporal network for active biometric authentication
with data provided by smartphone sensors (e.g. accelerometers, gyroscope, etc.).

Recently, some authors have proposed the use of 3D convolutions to extract visual and temporal
data from videos. Tran et al. [31] define a new network composed of 3D convolutions in the first layers
that has been successfully applied to action recognition. Following that idea, Wolf et al. [32] build a
CNN with 3D convolutions for gait recognition. Due to the high number of parameters that must be
trained (3D convolutions implies three times more parameters per convolutional layer), Mansimov et
al. [33] show several ways to initialize a 3D CNN from a 2D CNN.
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2.2. Information fusion

Since there are different descriptors for representing the same data, an interesting idea would be
to try to combine those descriptors into a single one that could benefit from the original descriptors.
To perform this task, several methods have appeared [34] [35]. Also, the emergence of new cheaper
devices that record multimodal GG (¢.c. RGB, depth, infrared) has allowed to investigate
how to fuse that information to build richer and more robust representations for the gait recognition
problem. Traditionally, fusion methods are divided into early fusion methods (or feature fusion) and
late fusion (or decision fusion). The first ones try to build descriptors by fusing features of different
descriptors, frequently, using the concatenation of the descriptors into a bigger one as in [36]. On the
other hand, late fusion tries to fuse the decisions obtained by each classifier of each modality, usually,
by applying arithmetic operations like sums or products on the scores obtained by each classifier
as in [36, B7). Castro et al. [38] perform an extensive comparative between late fusion and early
fusion methods including the traditional fusion schemes and others more [ElSHNGE that can perform
robust fusions. Fusion has been also employed with CNN to improve the recognition accuracy for
different computer vision tasks. For example, two independent CNNs fed with optical flow maps and
appearance information (i.e. RGB pixel volumes) are employed in [I8] to perform action recognition.
Then, class score fusion is used to combine the softmax output of both CNNs. In a similar way, Eitel
et al. [39] have proposed a DL approach for object recognition by fusing RGB and depth input data.
They concatenate the outputs of the last fully-connected layers of both networks (those processing
RGB and depth data) and process them through an additional fusion layer. Wang et al. [40] also
employ a multimodal architecture composed by two CNN networks to process RGB-D data. They
propose to learn two independent transformations of the activations of the second fully-connected
layer of each network, so correlation of color and depth features is maximized. In addition, these
transformations are able to improve the separation between samples belonging to different classes.

In this work, we explore several fusion techniques for the problem of gait-based people identifi-
cation, combining automatically-learnt gait signatures extracted from gray pixels, optical flow and
depth maps.

3. CNN overview

The convolutional neural network (CNN) model is an important type of fééd-forward neural net-

work with special success on applications where [fhe target information can be represented by a hi-
TSy ICINOCAINEATNIeS (sce [11]). A CNN is defined as the composition of several convolutional

layers and several fully connected layers. Each convolutional layer is, in general, the composition of
a non-linear layer and a pooling or sub-sampling layer to get some [iGIINGIENGE For images,
the non-lineal layer of the CNN takes advantage, through local connections and weight sharing, of
the 2D structure present in the data. These two conditions impose a very strong regularization on
the total number of weights in the model, which allows a successful training of the model by using
back-propagation.

In the last years, CNN models are achieving state-of-the-art results on many different complex
applications (e.g. object detection, text classification, natural language processing, scene labeling,
etc.) [1l @, 42, 43]. However, to the extent of our knowledge, only very few works [26], 27 28] [32]
have applied CNN models to the problem of gait recognition using as input low-level features different
to binary silhouettes (in contrast to [23]). The great success of the CNN model is in part due to its
use on data where the target can be represented through a feature hierarchy of increasing semantic
complexity. When a CNN is successfully trained, the output of the last hidden layer can be seen as
the coordinates of the target in a high-level representation space. [The fully connected layers, on top
of the convolutional ones, [allow us'to reduce the HNMNSHSONENN of such representation @nd, therefore,
to improve the classification accuracy. In this work, we compare three kinds of CNN architectures
(i.e. 2D-CNN, 3D-CNN and ResNet), three kinds of input features (i.e. gray, optical flow and depth),
and diverse feature fusion techniques, applied to the problem of gait recognition.
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Figure 2: CNN input data. Sample frames extracted from a subsequence of 25 frames. (top rows) Optical flow in
z-axis and y-axis. where positive flows are displayed in pink and negative flows in blue (best viewed in color). (bottom
rows) Gray pixels and depth maps of the same sequence.

4. Proposed approach

In this section we describe our proposed framework to address the problem of gait recognition using
CNNs. The pipeline proposed for gait recognition based on CNNs is represented in Fig. I} (i) gather
low-level features along the whole sequence; (%) build up a data cuboid from consecutive low-level
feature maps; (iii) feed the CNN with the low-level feature cuboid to extract the gait signature; (iv)
fuse information from the different inputs; and, (v) apply a classifier to decide the subject identity.

4.1. Input data

We describe here the different types of low-level features used as input for the proposed CNN
architecture. In particular, we use optical flow, gray pixels and depth maps. An example of the three
types of low-level features is represented in Fig. [2] Our intuition is that this set of low-level features
will cover both motion (i.e. optical flow) and appearance information (i.e. pixels and depth) of people.

4.1.1. Optical flow

The use of optical flow (OF) as input data for action representation in video with CNN has already
shown excellent results [I8]. Nevertheless human action is represented by a wide, and usually well
defined, set of local motions. In our case, the set of motions differentiating one gait style from another
is much more subtle and local.

Let F; be an OF map computed at time ¢t and, therefore, Fi(z,y,c) be the value of the OF
vector component ¢ located at [SSHGMNGNGE (©. V), where ¢ can be either the horizontal or vertical
component of the corresponding OF vector. The input data I, for the CNN are cuboids built by
stacking L consecutive OF maps F;, where Iy, (x,y,2k —1) and I, (x,y, 2k) corresponds to the value of
the horizontal and vertical OF components located at spatial position (x,y) and time k, respectively,
ranging k in the interval [1, L].

Since each original video sequence will probably have a different temporal length, and CNN requires
a fixed size input, we [eXtract subsequernces of L frames from the full-length séquences. In Fig. 2] we
show five frames distributed every six frames along a subsequence of twenty-five frames in total (i.e.
frames 1, 7, 13, 19, 25). The first row shows the horizontal component of the OF (z-axis displacement)
and second row shows the vertical component of the OF (y-axis displacement). It can be observed
that most of the motion flow is concentrated in the horizontal component, due to the displacement of
the person. In order to remove noisy OF located in the background, as it can be observed in Fig.
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Figure 3: Proposed CNN architectures for gait signature extraction. a) 2D-CNN: linear CNN with four 2D
convolutions, two fully connected layers and a softmax classifier. b) 3D-CNN: 3D CNN four 3D convolutions, two
fully connected layers and a softmax classifier. ¢) ResNet-A: residual CNN with a 2D convolution, three residual
blocks (red boxes), an average pooling layer and a final softmax classifier. d) ResNet-B: residual CNN with a 2D
convolution, four residual blocks (red boxes), an average pooling layer and a final softmax classifier. More details in the
main text.

we might think in applying a preprocessing step for filtering out those vectors whose magnitude is out
of a given interval. However, since our goal in this work is to minimize the iICINCHINON i1 the
process of gait signature extraction, we will use those OF maps as returned by the OF algorithm.
ALFFi

4.1.2. Gray-level pizels

When using CNNs for object detection and categorization, the most popular low level features are
raw pixels [9]. In contrast to [I8], that uses single RGB frames for action recognition, we build cuboids
of gray pixels with the aim of better capturing the important features of the subject appearance. Note
that in gait recognition, color is not as informative as it is for object recognition. Therefore, using only
gray intensity will eventually help CNN to focus just on the gait-relevant information. An example
can be seen in the corresponding row of Fig.

4.1.83. Depth maps

As far as we know, the use of depth information has not been explored much in the field of gait
recognition. In [37] they basically use depth to segment people from background and compute the Gait
Energy Volume descriptor [44]. Castro et al. [45] represent depth information in a gray-scale image
where the intensity of a pixel is the depth value scaled to [0,255]. In our opinion, depth information
is rich and should be studied in depth for this problem. Therefore, given a sequence of depth maps,
we extract depth volumes that will be used as input data for the corresponding CNN architecture.
An example of depth maps can be seen in the bottom row of Fig.

4.2. CNN architectures for gait signature extraction

We have selected the three architectures that most frequently appear in the bibliography and
produce state-of-the-art results in different topics (e.g. action recognition, object detection, etc.).
The three proposed architectures are: (i) a linear CNN with 2D convolutions (2D-CNN), which is
the traditional and most common architecture; () a linear CNN with 3D convolutions and pooling
(8D-CNN), which is specially designed to capture information in videos; and, (i) a 2D very deep
residual CNN (ResNet), which produces state-of-the-art results in most challenging tasks.
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The input to our CNN is a volume of gray pixels, OF channels or depth maps of size N x N x L.
See Sec. for the actual values of N and L used in the experiments.

We describe below the four models compared in the experimental section (Sec. . Note that, along
this paper, we use the term ‘softmax layer’ to refer to a fully-connected layer with as many units as
classes followed by a softmax exponential layer.
2D-CNN: This CNN is composed of the following sequence of layers (Fig. ): ‘convl’, 96 filters of
size 7 x 7 applied with stride 1 followed by a normalization and max pooling 2 X 2; ‘conv2’, 192 filters
of size 5 x 5 applied with stride 2 followed by max pooling 2 x 2; ‘conv3’, 512 filters of size 3 x 3
applied with stride 1 followed by max pooling 2 x 2; ‘conv4’, 4096 filters of size 2 x 2 applied with
stride 1; ‘full5’, fully-connected layer with 4096 units and dropout; ‘full6’, fully-connected layer with
2048 units and dropout; and, ‘softmax’, softmax layer with as many units as subject identities. All
convolutional layers use the rectification (ReLU) activation function.
3D-CNN: As optical flow has two components and the CNN uses temporal kernels, the network is
split into two branches: z-flow and y-flow. Therefore, each branch contains half of the total filters
described below. Then, this CNN is composed by the following sequence of layers (Fig. ): ‘convl’,
96 filters of size 3 x 3 x 3 applied with stride 1 followed by a max pooling 2 x 2 X 2; ‘conv2’, 192
filters of size 3 x 3 x 3 applied with stride 2 followed by max pooling 2 X 2 X 2; ‘convs’, 512 filters
of size 3 x 3 x 3 applied with stride 1 followed by max pooling 2 x 2 x 2; ‘conv/’, 4096 filters of size
2 x 2 x 2 applied with stride 1; ‘concat’, concatenation of both branches (z-flow and y-flow); ‘full5’,
fully-connected layer with 4096 units and dropout; ‘full6’, fully-connected layer with 2048 units and
dropout; and, ‘softmaz’, softmax layer with as many units as subject identities. All convolutional
layers use the rectification (ReLU) activation function.

ResNet-A: This CNN is composed by the following sequence of layers and residual blocks (a se-
quences of two convolutions of size 3 x 3, as defined in [10] for CIFAR Dataset). This model is specially
designed for small datasets with low variability because this kind of networks tends to overfit due to
its high number of layers. As our architecture follows the indications defined by the authors [10], we
only describe the main blocks (Fig. ): ‘convl’, 16 filters of size 3 x 3 applied with stride 1 followed
by a max pooling 2 x 2 and stride 2; ‘block 1’, 5 residual blocks with convolutions of 16 filters of size
3 x 3 applied with stride 1; ‘block 2’, 5 residual blocks with convolutions of 32 filters of size 3 x 3
applied with stride 1; ‘block 3’, 5 residual blocks with convolutions of 64 filters of size 3 x 3 applied
with stride 1; ‘average pooling’, size 8 x 8 with stride 1; and, ‘softmaz’, softmax layer with as many
units as subject identities. All convolutional layers use the rectification (ReLU) activation function
and batch normalization.

ResNet-B: This model is an extension of the model ResNet-A. The number and size of layers of
this model is increased and it is Specially designed for datasets with high variability (e.g. CASTIA-B).
This CNN is composed by the following sequence of layers and residual blocks (a sequence of three
convolutions of size 1 x 1, 3x 3 and 1 x 1, as defined in [10]). As our architecture follows the indications
defined by the authors, we only describe the main blocks (Fig. ): ‘convl’, 64 filters of size 7 x 7
applied with stride 1 followed by a max pooling 3 x 3 and stride 2; ‘block 1°, 4 residual blocks with
convolutions of 64 filters of size 3 x 3 applied with stride 1; ‘block 2’, 6 residual blocks with convolutions
of 128 filters of size 3 x 3 applied with stride 1; ‘block 3’, 8 residual blocks with convolutions of 256
filters of size 3 x 3 applied with stride 1; ‘block 4, 3 residual blocks with convolutions of 256 filters
of size 3 x 3 applied with stride 1; ‘average pooling’, size 2 x 2 with stride 1; and, ‘softmaz’, softmax
layer with as many units as subject identities. All convolutional layers use the rectification (ReLU)
activation function and batch normalization.

4.2.1. Model training

For 2D and 3D models, we perform an incremental training to speed up and to |GG the
CORNSIEEEE [ this IGESESEEEN process, initially, we train a simplified version of each model (i.e.
less units per layer and no dropout) and, then, we use its weights for initializing the layers of a more
complex version of that previous model (i.e. 0.1 dropout and more filters and units). By this way, we
train three incremental versions using the previous weights until we obtain the final model architecture
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represented in Fig.

During CNN training, the weights are learnt using mini-batch
with momentum equal to 0.9 in the first two incremental iterations of the 2D and 3D models, and 0.95
during the last one. Note that ResNet-A and ResNet-B are trained from scratch in just one iteration
(without incremental training) so momentum for these nets is set to 0.9. We set weight decay to
5-10~* and dropout to 0.4 (when corresponds). The number of-is limited to 20 in TUM-GAID
and the learning rate is initially set to 1072 and it is divided by ten when the validation error gets
stuck. Due to the specifics of the ResNet models, the initial learning rate is set to 0.1.

In CASIA-B we limit the training stage to 30 epochs, the learning rate is initially set to 1072 and
it is divided by two when the validation error gets stuck. At each epoch, a mini-batch of 150 samples
is randomly selected from a balanced training set (i.e. almost the same proportion of samples per
class). Note that for ResNet models we use a mini-batch of 64 samples. When the CNN training has
converged, we perform five more epochs on the joint set of training and validation samples.

To run our experiments we use the implementation of CNN provided in MatConvNet library [46].
This library allows to develop CNN architectures in an easy and fast manner using the Matlab envi-
ronment. In addition, it takes advantage of CUDA and cuDNN [47] to improve the performance of
the algorithms. Using this open source library will allow other researchers to use our trained models
and reproduce our experimental results.

4.3. Single modality

Once we have obtained the gait signatures, the final stage consists in classifying those signatures
to derive a subject identity. Although the softmax layer of the CNN is already a classifier (i.e. each
unit represents the probability of belonging to a class), the fully-connected layers can play the role
of gait signatures that can be used as input of a Support Vector Machine (SVM) classifier. Since we
are dealing with a [illlliGIEEE problem, we define an [lSGIIBNE of C binary SVM classifiers with linear
kernel in an ‘one-vs-all’ fashion, where C' is the number of possible subject identities. Previous works
(e.g. [48]) indicate that this configuration of binary classifiers is suitable to obtain top-tier results
in this problem. Note that we L2-normalize the top fully-connected layer before using it as feature
vector, as early experiments shown improved results.

In Sec. we split the whole video sequence into overlapping subsequences of a fixed length, and
those subsequences are classified independently. Therefore, in order to derive a final identity for the
subject walking along the whole sequence, we apply a imajority voting strategy on the labels assigned
to each subsequence.

An alternative way for obtaining a final label for a video v from the set of subsequences {s;} is to
derive the identity from the product of softmax vectors (i.e. probability distributions P;) obtained:

t
Pw=c) =[] P(si =), cavbmz-caFmolscpomzgs (1)
=1

where t is the number of subsequences extracted from video v, P(v = ¢) is the [FEOBABIE of assigning

the identity ¢ to lNCIpeISOMMMNICEONS and P;(s; = c) is the [PEOBABIGY of assigning the identity c to
¢ petson i subsequence s

4.4. Multiple modalities

In the case where several low-level features have been used, we explore different approaches for
combining the outputs of the CNN.
Late fusion. Focusing on the softmax scores returned by each CNN, we explore the following
approaches to combine them: product and weighted sum. These approaches are considered as ‘late
fusion’ ones, as fusion is performed on the classification scores.
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A) Product of softmazx vectors. Given a set of n softmax vectors {P;} obtained from a set of different
modalities {m;}, a new score vector Spoq is obtained as:

Sproa(v = ¢) = [ [ Pi(mi = ¢) ctevebatoitize= missit c e v Pi0RE  (2)
=1

where n is the number of modalities used to classify video v, Sproa(v = ¢) can be viewed as the
probability of assigning the identity ¢ to the person in video v and P;(m; = ¢) is the probability of
assigning the identity c to the person in modality m;.

B) Weighted sum of softmazx vectors. Given a set of n softmax vectors obtained from a set of different
modalities {m;} a new score vector Sy is obtained as:

Sws(v=1c) =Y _ BiPi(m; = ), BHHENERAEFRINE (3)
=1

where n is the number of modalities used to classify video v, Sys(v = ¢) can be viewed as the
probability of assigning the identity ¢ to the person in video v, P;(m; = ¢) is the probability of
assigning the identity ¢ to the person in modality m; and |8; is the weight associated to modality m;,
subject to 8; >0 and Y., 8; = 1.

B values are selected empirically by cross-validation. Note that the values used for each experiment
are specified in its corresponding section.

Early fusion. The fusion performed at descriptor level is known as ‘early fusion’.

In our case, as we are working with CNNs, early fusion could be performed at any layer before
the ‘softmax’ one. Depending on the layer, the combined descriptors are matrices (fusion before a
convolutional layer) or vectors (fusion before a fully-connected layer). We have tried all the possible
fusion locations for our CNNs and we have selected the best solution according to the results obtained.
In our case, the best early fusion location is after layer ‘full6’ of each modality. The activations of
those layers are [[lGaNonaNeE 2nd fed into a new set of layers to perform the actual fusion. Therefore,
we extend the 2D and 3D networks shown in Fig. [3] with the set of additional layers summarized in

Fig. [

‘concat:’ concatenation layer;

‘full7:’ fully-connected layer with 4096 units, ReLU and dropout;
‘full8:’ fully-connected layer with 2048 units, ReLU and dropout;
‘full9:’ fully-connected layer with 1024 units, ReLLU and dropout; and,
‘softmax:’ softmax layer with as many units as subject identities.

During the training process, the weights of the whole CNN (the branch of each modality and the
fusion layers) are trained altogether, automatically learning the best combination of weights for the
modalities. From our point of view, this kind of fusion is considered early as it is not performed at
classification-score level, as done above.

For ResNet models, due to their high number of layers, we do not stack more fully-connected layers
to prevent overfitting. Therefore, the selected early fusion architecture is the same as for the rest of
models but without fully-connected layers:

‘concat:’ concatenation layer;
‘softmax:’ softmax layer with as many units as subject identities and dropout.

5. Experiments and results

We present here the experiments designed to validate our approach and the results obtained on
the selected datasets for gait recognition.
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Figure 4: Proposed set of layers for early fusion. A concatenation layer and three fully-connected layers are
followed by a softmax classifier used to directly derive an identity. More details in the main text.

5.1. Datasets

We run our experiments on two widely used and challenging datasets for gait recognition: TUM-
GAID [37] and CASIA-B [49].
TUM-GAID. In ‘TUM Gait from Audio, Image and Depth’ (TUM-GAID) 305 subjects perform two
walking trajectories in an indoor environment. The first trajectory is performed from left to right and
the second one from right to left. Therefore, both sides of the subjects are recorded. Two recording
sessions were performed, one in January, where subjects wore heavy jackets and mostly winter boots,
and the second in April, where subjects wore different clothes. The action is captured by a Microsoft
Kinect sensor which provides a video stream with a resolution of 640 x 480 pixels with a frame rate
of approximately 30 fps. Some examples can be seen in the left part of Fig. [5| depicting the different
conditions included in the dataset. i#® 7 — FTUM-GAIDEIELEE EIAZS

SIS t1.c following nomenclature is used to refer each of the four walking conditions consid-
ered: normal walk (N), carrying a backpack of approximately 5 kg (B), wearing coating shoes (5),
as used in clean rooms for hygiene conditions, and elapsed time (TN-TB-TS). Each subject of the
dataset is composed of: six sequences of normal walking (N1, N2, N3, N4, N5, N6), two sequences
carrying a bag (B1, B2) and two sequences wearing coating shoes (S1, S2). In addition, 32 subjects
were recorded in both sessions (i.e. January and April) so they have 10 additional sequences (TN1,
TN2, TN3, TN4, TN5, TN6, TB1, TB2, TS1, TS2). Therefore, the overall amount of videos is 3400.

We follow the experimental protocol defined by the authors of the dataset [37]. Three subsets of
subjects are proposed: training, validation and testing. The training set is used for obtaining a robust
model against the different covariates of the dataset. This partition is composed of 100 subjects and
the sequences NI to N6, B1, B2, S1 and S2. [The validation set is used for validation purposes and
contains 50 different subjects with the sequences NI to N6, B1, B2, S1 and S2. Finally, the test set
contains other 155 different subjects used in the test phase. As the set of subjects is different between
the test set and the training set, a new training of the identification model must be performed. For
this purpose, the authors reserve the sequences N1 to N/, from the subject test set, to train the model
again and the rest of sequences are used for testing and to obtain the accuracy of the model. In the
elapsed time experiment, the temporal sequences (TNI, TN2, TN3, TN4, TN5, TN6, TB1, TB2,
TS1, TS2) are used instead of the normal ones and the subsets are: 10 subjects in the training set, 6
subjects in the validation set and 16 subjects in the test set.

In our experiments, after parameter selection, the validation sequences are added to the training
set for fine-tuning the final model.
CASIA-B. In CASIA-B 124 subjects perform walking trajectories in an indoor environment (right
part of Fig.[5). The action is captured from 11 viewpoints (i.e. from 0° to 180° in steps of 18°) with
a video resolution of 320 x 240 pixels. Three situations are considered: normal walk (nm), wearing a
coat (cl), and carrying a bag (bg). The authors of the dataset indicate that sequences 1 to 4 of the
‘nm’ scenario should be used for training the models. Whereas the remaining sequences should be
used for testing: sequences 5 and 6 of ‘nm’, 1 and 2 of ‘cl’ and 1 and 2 of ‘bg’. Therefore, we follow
this protocol in our experiments, unless otherwise stated. This makes a total of 496 video sequences
for training, per camera viewpoint.
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Figure 5: Datasets for gait recognition. (left) TUM-GAID. People walking indoors under four walking conditions:
normal walking, wearing coats, carrying a bag and wearing coating shoes. Top and bottom rows show the same set of
subjects but in different months of the same year. (right) CASIA-B. People walking indoors recorded from eleven
camera viewpoints and under three walking conditions: normal walking, wearing coats and carrying a bag.

5.2. Implementation details

We ran our experiments on a computer with 32 cores at 2.3 GHz, 256 GB of RAM and a GPU
NVidia Titan X Pascal, with MatConvNet library [46] running on Matlab 2016a for Ubuntu 16.04.

For the following experiments with CNN, we resized all the videos to a common resolution of
80 x 60 pixels, keeping the original aspect ratio of the video frames. |GG cxperiments support
this choice [26], as this size exhibits a good trade-off between computational cost and recognition
performance. Note that resolution 80 x 60 is 4 times lower than original CASTA-B and 8 times lower
than TUM-GAID one. Given the resized video sequences, we compute dense OF on pairs of frames
by using the method of Farneback [50] implemented in OpenCV library [51]. In parallel, people are
located in a rough manner along the video sequences by background subtraction [52]. Then, we crop
the video frames to remove part of the background, obtaining video frames of 607X 60 pixels (full
height is kept) and to align the subsequences (people are z-located in the middle of the central frame,
#13) as in Fig.

Finally, from the cropped OF maps, we build subsequences of 25 frames by stacking OF maps
with an overlap of O% frames. In our case, we chose © = 80%, that is, to build a new subsequence,
we use 20 frames of the previous subsequence and 5 new frames. For most state-of-the-start datasets,
25 frames cover almost one complete gait cycle, as stated by other authors [53]. Therefore, €ach OF

The same process described above is applied to the gray pixels and depth inputs; obtaining volumes
bf §ize 60 X 60 X 25. Before feeding the CNN with those data volumes, the mean of the training set

for each modality is subtracted to the input data. Both gray and depth values are normalized to the
range [0, 255]. Note that in CASIA-B, due to the high variability between viewpoints, it is necessary
to normalize gray values to the range [0, 1].

To increase the amount of training samples we add mirror sequences and apply spatial displace-
ments of +5 pixels in each axis, obtaining a total of 8 new samples from each original sample.

5.8. Performance evaluation

For each test sample, we return a sorted list of possible identities, where the top one identity
corresponds to the largest scored one. Therefore, we use the following metrics to quantitative measure
the performance of the proposed system: rank-1 and rank-5. Metric rank-1 measures the percentage

of test samples where the top one assigned identity corresponds to the right one. Metric rant-3
kGl identitios for. e Contesponding Gest Sample. Note that rank-5 is less strict than rank-1 and,

in a real system, it would allow to verify if the target subject is any of the top five most probably
ones. Final results at sequence level are obtained by applying a majority vote strategy except in the
product of softmax scores which is the only case where we have probabilities between 0 and 1 and
therefore, we can multiply them for obtaining a sequence probability.

Along this section, we are going to use the following notation: ‘SM-Vote’: softmax decision followed
by majority voting to obtain the sequence level results; ‘SM-Prod’: softmax decision followed by the
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Best average accuracy for non-temporal scenarios (N, B, S) Best average accuracy for temporal scenarios (TN, TB, TS)
80

Acc (%)

2D-CNN 3D-CNN ResNet-A
b)

Figure 6: Best average accuracy. a) non-temporal scenarios (N, B, S) b) temporal scenarios (TN, TB, TS)

product of the scores to obtain the sequence level results; ‘SVM-L2’: SVM with L2 normalization of
the features; ‘SVM-SM’: SVM trained with the scores of the softmax.

5.4. Ezperimental results on TUM-GAID

In this section, we first examine the impact of CNN architectures in automatic extraction of gait
signatures from diverse low-level features, studying which one is the more convenient for the different
scenarios. Afterwards, we evaluate the impact of combining gait signatures from different low-level
features for people identificatidl. Finally, we compare our results to the state-of-the-art ones.

5.4.1. Architecture and feature evaluation

In this experiment, we evaluate the individual contribution of each low-level feature (i.e. gray
pixels, optical flow and depth maps) and each architecture (i.e. 2D, 3D and ResNet) for extracting
discriminative gait signatures. Note that, as this dataset only contains a single viewpoint, ResNet
models tend to overfit due to the lack of variability in the training data. Therefore, we use ResNet-A
(see Sec. for more details) which is shallower than traditional ResNet models. Tabs. and
summarize the identification results obtained on TUM-GAID with each modality: Gray, OF and
Depth. Each column contains the results for rank-1 (R1) and rank-5 (R5) for each scenario. The last
column ‘AVG’ is the average of each case (temporal and non temporal) weighted by the number of
classes.

Table 1: Feature selection on TUM-GAID Gray-modality. Percentage of correct recognition by using rank-1
(R1) and rank-5 (R5) metrics. Each row corresponds to a different classifier and modality. Each column corresponds
to a different scenario. Best average results are marked in bold.

N B S TN TB TS AVG
R1I R5 R1I R5 R1I R5|R1 R5 R1I R5 Rl R5 | RI RS
SM-Vote [99.4 100 99.0 99.7 98.4 99.7|31.3 53.1 34.4 65.6 34.4 62.5]92.8 96.1
SM-Prod | 100 100 99.7 99.7 98.4 99.7|28.1 62.5 37.5 71.9 34.4 59.4|/93.2 96.5
SVM+L2|100 100 99.7 99.7 98.4 99.7|34.4 68.8 31.3 78.1 34.4 68.8/93.2 97.2
SVM-SM [99.4 99.7 99.4 99.4 97.4 98.7|28.1 65.6 34.4 71.9 34.4 68.8|92.5 96.4
SM-Vote [99.7 100 98.4 99.7 96.8 99 [21.9 50 21.9 46.9 12.5 43.8[/90.9 94.6
SM-Prod |97.7 97.7 93.9 94.2 91.3 91.6|18.8 37.5 21.9 37.5 12.5 31.3|87.1 &9
SVM+L2|100 100 98.1 99.4 97.7 99 |18.8 56.3 28.1 62.5 15.6 62.5|91.3 95.8
SVM-SM [99.7 99.7 98.4 99 96.8 97.7|21.9 43.8 21.9 53.1 12.5 43.8|/90.9 93.9
SM-Vote [99.4 100 95.8 99.4 96.1 99 | 25 62.5 344 98.8 25 59.4/90.6 96.1
SM-Prod | 99 100 96.5 99.4 95.5 99 |28.1 56.3 34.4 68.8 25 56.3|90.7 95.8
SVM+L2|100 100 97.4 99 97.7 100 |34.4 53.1 34.4 53.1 344 50 | 924 95.2
SVM-SM | 100 100 95.8 97.7 97.1 98.7| 25 50 25 62.5 25 56.3|90.8 94.8

2D-CNN

RESNET-A| 3D-CNN

In Fig. [6] appears the best average performance for non-temporal and temporal scenarios per
modality. If we focus on the non-temporal scenarios (N, B and §), we can see that features based on
Gray or Depth are able to outperform the results obtained with OF. On the other hand, if we focus
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Table 2: Feature selection on TUM-GAID OF-modality. Percentage of correct recognition by using rank-1
(R1) and rank-5 (R5) metrics. Each row corresponds to a different classifier and modality. Each column corresponds
to a different scenario. Best average results are marked in bold.

N B S TN TB TS AVG
R1 R5 R1 R5 R1 R5|RI R5 RI R5 R1 R5| RI RS
SM-Vote [99.4 100 97.4 100 96.4 99.4|53.1 96.9 43.8 87.5 56.3 93.8]/93.4 99.1
SM-Prod [99.4 100 97.7 100 96.1 99.4|56.3 87.5 43.8 84.4 59.4 90.6|93.6 98.7
SVM+L2]99.4 100 96.5 99.4 96.8 99.4|50.0 90.6 56.3 84.4 43.8 90.6|93.1 98.6
SVM-SM [99.0 100 96.8 98.4 95.5 98.7|53.1 78.1 50.0 81.3 56.3 91.3|93.0 97.6
SM-Vote | 99 99.4 95.5 99.7 94.2 98.1(65.6 90.6 65.6 93.8 59.4 87.5[93.2 98.3
SM-Prod |98.7 99.7 97.1 99.4 94.5 98.7|71.9 87.5 68.8 87.5 65.6 84.4|94.1 98.1
SVM+L2198.7 99.4 93.9 99 92.6 98.4|65.6 87.5 65.6 81.3 56.3 90.6| 92 97.8
SVM-SM |98.7 99 95.5 99.4 94.2 97.1|65.6 90.6 65.6 81.3 59.4 84.4|93.1 97.3
SM-Vote [94.5 99.7 81 98.4 85.1 97.7[34.4 93.8 34.4 90.6 37.5 93.8(82.1 98.1
SM-Prod [95.2 99.4 81 98.7 86.1 97.7|34.4 96.7 40.6 93.8 43.8 93.8| 83 98.2
SVM+L2|99.4 99.4 93.9 98.1 92.2 98.1|37.5 87.5 40.6 81.3 53.1 90.6|90.4 97.4
SVM-SM |97.4 98.7 89.7 96.5 89.6 92.6|37.5 75 43.8 84.4 469 75 |87.6 95.4

2D-CNN

RESNET-A| 3D-CNN

Table 3: Feature selection on TUM-GAID Depth-modality. Percentage of correct recognition by using rank-1
(R1) and rank-5 (R5) metrics. Each row corresponds to a different classifier and modality. Each column corresponds
to a different scenario. Best average results are marked in bold.

N B S TN TB TS AVG
RI R5 RI R5 RI R5|R1I R5 RI R5 R1I R5 | RI R5
SM-Vote [98.4 100 65.8 90.0 96.8 99.7|34.4 93.8 34.4 93.8 50.0 84.4| 82.6 96.0
SM-Prod |98.7 100 66.1 90.7 96.8 99.7|43.8 90.6 40.6 87.5 46.8 84.4|83.1 95.9
SVM+L2|99.0 99.7 69.4 85.8 97.1 99.7|46.9 84.4 37.5 81.3 50.0 84.4|84.4 94.0
SVM-SM |98.7 99.0 65.8 77.7 96.8 98.4|34.4 68.8 40.6 59.4 43.8 68.8| 82.7 89.3
SM-Vote [97.7 98.4 84.2 96.5 96.8 99.4|68.8 100 50 100 75 100 |90.3 98.3
SM-Prod |98.4 100 86.8 96.1 97.4 99.4| 62 87.4 53.1 96.9 78.1 100 |91.4 98.2
SVM+L2|96.6 98.7 78.7 91.6 96.8 99.4|71.9 96.9 46.9 90.6 68.8 96.9|88.1 96.4
SVM-SM |98.4 99 83.6 88.4 96.4 98.4|68.8 81.3 53.1 65.6 75 87.5|90.3 93.7
SM-Vote |77.7 99.4 60 91.6 71.8 97.4|56.3 81.3 37.5 81.3 46.9 90.6| 67.7 95
SM-Prod |77.1 98.4 60 91.3 70.9 96.1|56.3 78.1 34.4 81.3 46.9 87.5|67.1 94.1
SVM+L2|99.4 99.7 91.6 97.7 97.1 99.4|31.3 50 219 46.9 21.9 53.1|89.4 94.4
SVM-SM |98.4 99.4 86.5 96.5 87.9 93.6| 50 62.5 34.4 53.1 46.9 62.5|86.5 93

2D-CNN

RESNET-A| 3D-CNN

on the temporal scenarios (TN, TB and TS), the worst results are obtained with Gray. These results
evidence the weakness of appearance models under conditions with high variability between training
and test samples (like our temporal experiment). However, OF models have a better sturdiness against
appearance changes on the inputs. On average, the best results are obtained when using optical flow
(OF) as base for extracting the gait signature.

With regard to the type of architecture, the behaviour of all of them is very similar on the non-
temporal scenarios. However, for the temporal scenarios, 3D-CNN offers its best results in combination
with either OF or Depth, whereas 2D-CNN and ResNet work better with Gray. Considering the
average accuracy over all the scenarios, 2D-CNN works better with Gray, and 3D-CNN with both OF
and Depth.

Finally, note that all the strategies employed for obtaining the identity at video level offer similar
performance. However, SM-Prod seems to work slightly better on average. Recall that it is defined
as the product of probabilities obtained at the softmax layer (see Sec. , what does not require to
train an additional classifier as SVM.
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5.4.2. Feature fusion

As we can use three types of low-level features from TUM-GAID, we study here the benefits of
fusing information from the different sources. We are going to use as basis the data of Tabs.
and [3] concretely, data obtained with the product of softmazx vectors on each modality. We have
experimented with three types of fusion methods for all the combinations that include optical flow,
chosen due to its sturdiness under all walking conditions.

Firstly, we analyse the results within each type of architecture. The results of Tab. 4| correspond to
2D-CNN and indicate that, in general, the best option is to combine all three modalities for all fusion
methods except for SM Prod where it is better to use only OF and Gray. Note that for Weighted
Sum, we have used the weights 0.4,0.3 and 0.3 for OF, Gray and Depth, respectively, when we fuse
all modalities. In the case of only two modalities, we use weights 0.6 and 0.4 for OF and the other
modality, respectively. According to the average results, all fusion approaches improves the single
modality results what encourages the use of multiple modalities. Regarding the fusion strategy, the
proposed Farly fusion CNN provides on average the best results.

Table 4: Fusion strategies in TUM-GAID with 2D-CNN. Percentage of correct recognition for different modalities
and fusion methods. Each row corresponds to a different fusion strategy. Best results are marked in bold.

Fusion Modalities N B S TN TB TS | AVG

Gray 100  99.7 98.4 | 28.1 37.5 344 | 93.2
Single OF 99.4 977 96.1 | 56.3 43.8 59.4 | 93.6
Depth 98.7 66.1 96.8 | 43.8° 40.6 46.8 | 83.1

OF-Gray 99.7 997 99.0 | 40.6 37.5 53.1 | 94.3
SM Prod | OF-Depth | 929 88.1 98.7 | 59.4 40.6 46.9 | 89.1
All 929 90.0 99.0 | 56.3 56.3 50.0 | 90.2
OF-Gray 99.4 984 987 | 50.0 344 53.1 | 93.9
W. Sum | OF-Depth | 97.7 939 99.0 | 53.1 43.8 59.4 | 92.7
All 99.0 98.1 99.7 | 50.0 344 53.1 | 94.0
OF-Gray 100 96.8 984 | 56.3 56.3 53.1 | 944
Early OF-Depth | 99.4 884 98.1 | 50.0 56.3 46.9 | 91.2
All 99.4 984 984 | 50.0 62.5 594 | 94.9

Focusing on the results obtained with the 83D-CNN (Tab. , the best average accuracy is reported
by the combination of all modalities by W Sum. However, it is only slightly better than the best
result obtained by using only OF. Due to the low accuracy obtained with Gray, combining it with
other features worsen the fused results.

Table 5: Fusion strategies in TUM-GAID with 3D-CINN. Percentage of correct recognition for different modalities
and fusion methods. Each row corresponds to a different fusion strategy. Best results are marked in bold.

Fusion Modalities N B S TN TB TS | AVG

Gray 977 939 91.3 | 188 21.9 12,5 | 87.1
Single OF 98.7 97.1 945 | 71.9 68.8 65.6 | 94.1
Depth 984 86.8 974 | 62 53.1 781 | 914

OF-Gray 93.5 84.8 83.5 | 125 125 156 | 804
SM Prod | OF-Depth | 922 974 96.8 | 78.1 62,5 15.6 | 914
All 784 842 835 | 125 21.9 125 | 75.8
OF-Gray 974 981 96.1 | 711.9 50  53.1 | 93.6
W. Sum | OF-Depth | 95.5 96.5 96.8 | 65.6 68.8 53.1 | 93.1
All 96.8 984 97.1 | 65.6 65.6 59.4 | 94.3
OF-Gray 99.4 96.8 94.5 | 625 50 56.3 | 93.1
Early OF-Depth | 84.8 974 974 | 719 68.8 719 | 91.1
All 99.7 987 97.7 | 344 25 31.3 | 923
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Finally, the ResNet architecture (see Tab. @ shows unexpected low fusion results. It may indicate
that the probability distribution on the classes obtained at the softmax layer does not show clearly
defined maxima, and small changes in those values cause important changes in the final classes.
However, Early Fusion improves the results on average for the combination OF and Gray, what
indicates that adding more inputs to the training process can be beneficial to avoid local minima.

In summary, by using multimodal information the recognition accuracy improves 0.9% with respect
to the best single modality (i.e. OF).

Table 6: Fusion strategies in TUM-GAID with ResNet. Percentage of correct recognition for different modalities
and fusion methods. Each row corresponds to a different fusion strategy. Best average results are marked in bold.

Fusion Modalities N B S TN B TS | AVG

Gray 99.0 96.5 955 | 281 344 25.0 | 90.7
Single OF 95.2 81.0 86.1 | 37.5 40.6 43.8 | 83.1
Depth 771 60.0 71.0 | 56.3 34.4 46.9 | 67.2

OF-Gray 84.8 77T 793 | 469 40.6 50 7.3
SM Prod | OF-Depth | 71.2 63.6 69.6 | 563.1 37.5 53.1 | 66.2
All 79.9 80.7 81.9 | 56.3 344 56.3 | 77.9
OF-Gray 72.8 60.7 64.4 | 31.3 31.3 40.6 63

W. Sum OF-Depth | 68.3 539 625 | 37.5 469 56.3 | 60.2
All 72.5 60 64.7 | 31.3 28.1 46.9 | 62.9
OF-Gray 99.4 948 97.7 | 40.6 344 43.8 | 91.9
Early-RES | OF-Depth | 95.8 93.2 96.1 | 40.6 37.5 43.8 | 89.9
All 80.3 87.1 884 | 406 50 50 81.7

5.4.8. State-of-the-art on TUM-GAID

In Tab. [7], we compare our results with state-of-the-art in TUM-GAID under all modalities previ-
ously employed (Gray, OF, Depth and Fusion). First of all, we would like to remark that our approach
uses a resolution of 80 x 60 while the rest of methods use 640 x 480. Therefore, our method uses 64
times less information. If we focus on the visual modality (Gray in our case), we can see that our
method outperforms previous results in non temporal scenarios establishing a new state-of-the-art .
On the other hand, in the temporal scenarios we have lower results than the other methods due to
the high variability in visual information. Then, if we focus on OF, we can see that the best results
are obtained by PFM [48] with a resolution of 640 x 480. Nevertheless, if we apply PFM with a
resolution of 80 x 60, its results worsen dramatically and our CNN is able to outperform it in all sce-
narios. If we compare our CNN with other deep learning approaches presented in the literature, only
MTaskCNN-7NN [28] is able to improve our approach. This model has been trained in a multi-task
fashion so, during training, there are more information available to optimize the weights. If we focus
on the other deep learning approaches, we can see that we obtain similar results (only a 0.2% lower)
on average but, we obtain the state-of-the-art for temporal scenario. In Depth modality, we can see
that our method obtains better results than other methods, which use full resolution frames, in all
cases except N. Nevertheless, on average, we are able to obtain more than a 10% of improvement.
Finally, if we fuse information from all modalities with a CNN, the average score achieved by both
scenarios (temporal and non-temporal) beats all the methods shown in Tab. |z| with the exception
of PFM (640x480) [48] and MTaskCNN-7NN [28], where we are 1.5% and 1.1% below, respectively.
However, if we apply the same 7NN approach as in [28], and we fuse the probabilities obtained, we set
a new state-of-the-art (96.5% vs 96.0%) for all scenarios with our 3D-CNN-7NN-All using Softmax
Product as fusion.

5.5. Experimental results on CASIA-B

We focus here on CASIA-B dataset, which offers different covariate factors and multiple viewpoints.
Note that, for the sake of comparison with other methods, we train our models with all cameras and
the test is performed only with the 90° camera as done in state-of-the-art approaches [8], 48].
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Table 7: State-of-the-art on TUM GAID. Percentage of correct recognition on TUM-GAID for diverse methods
published in the literature. Bottom rows of each modality correspond to our proposal, where instead of using video
frames at 640 x 480, a resolution of 80 x 60 is used. Each column corresponds to a different scenario. Best results are
marked in bold. (See main text for further details).

Modality| Input Size Method N B S |Au||TN TB TS| Avg || Global Avg
SDL [54] e S T B -

@ 2 GEI [37] 99.4 27.1 52.6|59.7||44.0 6.0 9.0 | 19.7 56.0
= j SEIM [55] 99.0 184 96.1|71.2||15.6 3.1 28.1|15.6 66.0
e o GVI [55] 99.0 47.7 94.5|80.4 ||62.5 15.6 62.5|46.9 77.3
E 3 SVIM [55] 98.4 64.2 91.6(84.7|[65.6 31.3 50.0/49.0 ||  81.4
ﬁ RSM [56] 100 79.0 97.0|92.0 ||58.0 38.0 57.0|51.0 88.2
Gray 80 x 60| 2D-CNN-SMP (ours) |[100 99.7 98.4[99.4 [|28.1 37.5 34.4] 33.3 93.2
640 x 480 PFM [48 99.7 99.0 99.0{99.2 |[78.1 62.0 54.9|65.0 96.0
PFM [48 75.8 70.3 32.3]159.5(]50.0 40.6 25.0] 38.5 57.5
OF OF-CNN-NN [26] 99.7 98.1 95.8(97.9 ||62.5 56.3 59.4| 59.4 94.3
80 x 60 OF-ResNet-B [27] 99 95.5 97.4|97.3|/65.6 62.5 68.8|65.6 94.3
MTaskCNN-7NN [28] |99.7 97.4 99.7|98.9||59.4 62.5 68.8|63.6 95.6
3D-CNN-SMP (ours) [98.7 97.1 94.5|96.8 ||71.9 68.8 65.6|68.8 94.1
Depth 640 x 480 DGHEI [37] 99.0 40.3 96.1|78.5|[50.0 0.0 44.0|31.3 74.1
p 80 x 60 3D-CNN-SMP (ours) [98.4 86.8 97.4[94.2([62.0 53.1 78.1]64.4 91.4
640 x 480 DGHEI + GEI [37] 99.4 51.3 94.8(81.8[/66.0 3.0 50.0|39.7 77.9
Fusion 80 x 60 2D-CNN-AIl (ours) [99.4 98.4 98.4[98.7 [[50.0 62.5 59.4|57.3 94.9
3D-CNN-7NN-All (ours) | 100 99.4 99.4|99.6| 75 62.5 62.5|66.7 96.5

5.5.1. Architecture and feature evaluation

As this dataset contains eleven viewpoints, ResNet models have enough variability in the training
data. Therefore, we use ResNet-B (see Sec. for more details) which is deeper than ResNet-A.
Tab. [§] summarizes the identification results obtained on CASIA-B 90° with each modality: Gray and
OF. Note that this dataset does not provide depth information. R1 and R5 columns contain the
results for rank-1 (R1) and rank-5 (R5) for each scenario. The last column ‘AVG’ is the average of all
scenarios. The results at sequence level are obtained by multiplying the scores of the softmax layer.
Note that as in CASIA-B there is no training partition to build the model, we have split the dataset
into a training set composed of the first 74 subjects and a test set composed of the 50 remaining
subjects, following the indications in [§]. During the training process, all viewpoints and training
samples are used.

Table 8: Feature selection on CASIA-B 90°: Gray and OF modalities. Percentage of correct recognition by
using rank-1 (R1) and rank-5 (R5) metrics. Each row corresponds to a different classifier and modality, grouped by
architecture. Each column corresponds to a different scenario. Best average results are marked in bold.

nm bg cl AVG
RI R5 R1 R5 R1 R5[ RI R5
SM-Vote |91 98 82 95 37 82| 70 91.7
SM-Prod |92 100 85 98 45 90| 74 96
SM-Vote |72 93 69 87 33 76| 58 85.3
SM-Prod |81 92 73 90 45 77|66.3 86.3
SM-Vote |94 100 89 98 42 83| 75 93.7
SM-Prod |96 100 91 98 46 98 |77.7 98.7

SM-Vote |99 99 76 90 28 51|67.7 80

SM-Prod |99 99 78 93 27 62| 68 84.7
SM-Vote [98 99 86 99 37 70[73.7 89.3
SM-Prod |98 100 88 98 36 67| 74 88.3
SM-Vote |94 100 83 98 47 73| 74.7 90.3
SM-Prod |93 100 85 98 46 71 |74.7 89.7

2D

Gray

2D ||[RES 3D

OF
RES 3D

According to the results obtained, we can see that our model is able to identify people with a
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high accuracy in scenarios nm and bg while in scenario ¢l we have lower precision due to the high
appearance changes. If we focus on the modality used, on average, Gray is the best option most of
the time. In this dataset, with huge variations between points of view, the shape of the subject seems
to be important and it helps to classification. In scenario ¢l our models experiment a huge decrease
in accuracy mainly caused by the high variability of coats worn by the subjects. This can be seen in
Fig. 5| on the right part of the last row. In these pictures, the coat occludes the legs and if we add the
fact that we have different kind of coats with different number of occurrences, our CNN is not able to
learn good features for this scenario due to the high variability and low number of samples.

On the other hand, OF seems that it is not able to find a good representation if the shape of the
subject changes drastically. We think that this is because of the high variability in the appearance
of the subjects seen from the different cameras used for training. Therefore, as the models receive
different flow vectors, the training process cannot produce a view-independent model and the global
performance decreases. For example, frontal-views produce vectors whose main movement is focused
on Y-axis (there is no horizontal displacement of the subject) while lateral-views produce vectors
whose movement is focused on X-axis.

If we focus on the different architectures, according to the mean results, it is clear that ResNet-B
obtains the best results for each modality. That shows that ResNet is the more powerful model if
data with enough variability is available. On the other hand, 3D-CNN obtains really good results for
OF modality while 2D-CNN achieves good results for Gray modality.

5.5.2. Feature fusion

In this case, as we only have two modalities, fusion is performed using both. It can be observed
in Tab. [0] that the best method for fusing Gray and OF features is, on average, Softmax product
followed by weighted sum with weights 0.5 and 0.5 for Gray and OF, respectively. Focusing on the
three architectures, again, the best option is ResNet as it obtains the best results in all cases.

In this dataset, the late fusion of both modalities improves or obtains the same result as single
modality CNNs in all cases, apart from special cases where the difference between the accuracy of the
fused modalities is huge (e.g. cl for 2D-CNN). Anyway, on average, fusion always obtains the best
results with improvements of more than a 3%. In this case, early fusion is not able to improve the
single modality results. In our opinion, this is due to high variability between viewpoints. In addition,
we have observed that the two branches of the network have different convergence speeds, hence the
final features are not fused properly producing bad representations.

Table 9: Fusion strategies in CASIA-B 90°. Percentage of correct recognition with different fusion methods. Each
row corresponds to a different fusion method, but the two top rows that correspond to the baseline cases. Best average
results are marked in bold.

2D-CNN 3D-CNN ResNet
nm bg c[AVG|[nm bg cI[AVG|[nm bg cl[AVG
Gray 92 85 45| 74 || 81 73 45[66.3 || 96 91 46| T7.7
OF 99 78 27| 68 || 98 88 36| 74 | 93 85 46| 74.7
SM-Prod| 99 95 41|78.3| 98 96 49| 81 || 98 97 63| 86
W. Sum | 99 94 39| 77.3 || 98 95 46| 79.7 || 98 96 60| 84.7
Early 83 61 26| 56.7 || 76 74 46| 65.3 || 67 63 38| 56

5.5.8. State-of-the-art on CASIA-B

In Tab. we compare our results with state-of-the-art in CASIA-B under all modalities used
before (Gray and OF') and their fusion. First of all, we would like to remark that our approach uses
a resolution of 80 x 60 while the rest of methods use 320 x 240. Therefore, our method uses 16 times
less information. If we focus on the visual modality (Gray in our case), we can see that our ResNet-B
obtains the best results compared to the state-of-the-art even using the lowest resolution. Indeed, our
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model sets a new state-of-the-art for visual data. If we focus on OF, the best results are obtained by
PFM [48] with a resolution of 640 x 480. Nevertheless, if we apply it with a resolution of 80 x 60,
its results worsen dramatically and our ResNet-B is able to outperform it in all scenarios. With this
modality, our model sets the second best result in the state-of-the-art (apart from PFM with full
resolution). Finally, our fusion (softmax product) sets the best result and it improves our ResNet-B
for Gray modality by a 8.3%.

Focusing on [§], which is the closest approach to ours as they use also CNNs, our best average
result improves a 16.3% with respect to their best average accuracy. Focusing on individual scenarios,
they only improve our results in ¢l scenario if we use a single modality, probably due to the use of a
gallery-probe scheme. During test time, they must compare the test sample with all the probe samples
to get all distances, then, they select the class of the probe sample with the lowest distance. This
approach is easier but slower than our approach where we only need to propagate the test sample
through the CNN to obtain the class. However, if we use our fusion approach, we beat them in all
scenarios and we miminize the changes in the shape of ¢l scenario.

Table 10: State-of-the-art on CASIA-B, camera 90°. Percentage of correct recognition for several methods on
camera 90°. Bottom rows of each modality correspond to our proposal, where instead of using video frames at 640 x 480,
a resolution of 80 x 60 is used. Acronyms: ‘#subjs’ number of subjects used for test; ‘#train’ number of sequences per
person used for training; ‘#test’ number of sequences per person used for test. Best results are marked in bold.

Modality | Input Size Method #subjs #train #test| nm bg ¢l | Avg

o GEI [49] 124 4 2 |97.6 52.0 32.7|67.8

S GEI [49] 124 4 2 [97.6 52.0 32.7|67.8

g X iHMM [57] 84 5 1 194.0 45.2 42.9|60.7

a ] CGI 58] 124 1 1 |88.1 43.7 43.0|58.3
= i SDCNN [25] 124 4 2 956 - - | -
5 126 x 126 DCNN 124 4 2 |81l - - -

= 88 x 128 LBCNN 50 4 2 [91.5 63.1 54.6]69.7

Gray 80 x 60| ResNet-B (ours) 50 4 2 ]96.0 91.0 46.0(77.7

e, 320 x 240 PFM 124 4 2 100 100 85.5|95.2

o 30 x 60 PFM 124 4 2 [88.3 66.5 44.0(66.3

ResNet-B (ours) 50 4 2 ]93.0 85.0 46.0| 74.7

Fusion 80 x 60  |ResNet-B-SMP (ours)| 50 4 2 198.0 97.0 63.0]/86.0

5.6. Released material

In order to make reproducible the experimental results obtained in this paper, the CNN models
obtained during the experiments have been publicly released for the research community at the fol-
lowing website:
www.uco.es/~inlmajim/research/cnngait.html

After the review process, we also plan to release the related source code for reproducing the
experiments.

6. Conclusions

We have presented a comparative study of multi-feature systems based on CNN architectures for
the problem of people identification based on the way the walk (gait). The evaluated architectures
are able to extract automatically gait signatures from sequences of gray pixels, optical flow and
depth maps. Those gait signatures have been tested on the task of people identification, obtaining
state-of-the-art results on two challenging datasets, i.e. TUM-GAID and CASIA-B, that cover diverse
scenarios (e.g. people wearing long coats, carrying bags, changing shoes or camera viewpoint changes).

With regard to the type of input features, we may conclude that, (ldCHISIIHATIVICW POItSIICIZ
EUNECAID T REscakestIcHeNSNgrauIpiEels, s it is highly appearance dependant. However, as it

could be expected optical flow is the one that better encodes body motion. Depth maps work fairly

well if changes in appearance are small (i.e. Shoes scenario). [HliATasctoRvItINUTPICIIENPOMNItS
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(e.g. CASIA-B), [jfayipizelsiachieveeIBESHESHlis] probably due to optical flow produces extremely

different vectors depending on the viewpoint so, during training, the optimization process is not able
to build a good multiview representation of the subjects.
Regarding the type of architecture, 2D-CNN produces better results in most cases; BDICNNES

PSS ceT oS AUAppEATATCaGAnges: RESNGUOARIS oo dcsigned to be very decp,
therefore, they FEGANIEEIAESOSAHAEATABITAEAVEENSATBIES o periorm well. This has

been demonstrated in our experiments where ResNet-A produces worse results than the other two
architectures for TUM-GAID (dataset with low variability) but, on the other hand, ResNet-B produces
the best results for CASIA-B (dataset with high variability).

Finally, the cxperimental results show that NG
[FeCoEHitioHaccHracyIo It eISyStEIIaIyIeases or at least, it matches the best results achieved by

using a single modality.

[A§ final recommendation and, according to the results obtained, the best models are 3D-CNN and
ResNet, being the latter the best option if the dataset contains enough training data. Regarding to
fusion methods, the best option is late fusion approaches and, in our case, product of the softmax
scores. [ASfuture work, we plan to study in depth our early fusion approach to solve the problem of
different convergence rates in the branches.
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